关于数学学习计划(通用17篇)
关于数学学习计划 篇1
一、任教学科:数学
二、研究的课题:美育与未成年人思想道德建设研究
三、研究目的:
通过研究学校美育和德育的关系,提高学生的审美素质和道德素质,完善学生的心理结构。
四、课题比研究的主要内容:
在数学课堂教学中创设有利于学生审美能力提高的情境,通过美育促进学生德育的健康发展。探索美育与德育的内在关系,寻求以美促德的规律,创新德育新模式。
五、研究措施:
1、认真系统地学习有关的理论。认真地学习一些相关的专著和他人的经验性文章,在学习中提高认识,在学习中转变陈旧的观念。
2、努力提高自身专业素养,建立自己的课题博客专栏。尽可能多地与同行们交流探讨。必须下大力气,投入足够的时间和精力学习并经常性运用多媒体教学手段,提高自身运用现代教育技术能力。
3、认真备课、精心设计作业,进行踏实细致地调查分析。
4、注重课题研究过程,在学校研究计划安排下,积极参与课题研讨课的上课、听课和评课工作。主动与全组成员一起探讨成败得失,提高自己的理解和研究能力。
六、工作安排:
(1)积极参加学习。
(2)制定个人课题研究计划。
(3)参加课题培训学习。
(4)积极参与课题组开展的课题“研讨课”、“示范课”的听评课等校本教研活动。
(5)注意及时收集、整理、上传资料。
关于数学学习计划 篇2
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的`结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
关于数学学习计划 篇3
1 第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
2第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
3 第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.
3.掌握用洛必达法则求未定式极限的方法.
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
4 第四阶段复习计划
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。
本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
5 第五阶段复习计划
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法.
本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
6 第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
关于数学学习计划 篇4
1学习阶梯划分
一阶基础全面复习(3月~6月)
二阶强化熟悉题型(7月~10月)
三阶模考查缺补漏(11月~12月15日)
四阶点睛保持状态(12月16日~考试前)
2参考书目
必备参考资料:
数学考试大纲
《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。
《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生
《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。
历年真题
3复习计划
1、一阶基础,全面复习(3月~6月)
学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基——基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。
复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。
2、二阶强化熟悉题型(7月~10月)
本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。
第一轮暑期强化:7~8月
学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧
复习建议:参加考研教育网强化班学习,根据老师辅导讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。
第二轮秋季强化:9~10月
学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求
复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。
3、三阶模考查缺补漏(11月~12月15日)
学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求; 2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。
复习建议:建议考生要做到:1、通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);2、复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;3、开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。
4、第四阶点睛保持状态(12月15日~考试前)
学习目标:考前重点题型,应考技巧训练,保持状态
复习建议:多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电、手生。同时还要调整心态,积极备考,以良好的状态到考场。
4建议学习时间
每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00~12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。
关于数学学习计划 篇5
就学习时间而言,学生必须坚持在休息后每天抽出一定的时间进行学习。每天学习数学的时间不一定长,大概一个小时左右。关键在于每天这一个小时的时间一定要保证,数学的学习不能暴露在极寒中。你要知道,连续四天每天学习一个小时的数学,和一天连续四个小时学习数学,然后接下来三天完全不学习的效果是完全不一样的。在保证学习时间的同时,大家也要注意学习效率。在学习的过程中,不要急躁。学生要保证每天一个小时的学习被吸收。
其次,说一下学什么。
一、关注课本知识:
任何学科的学习都是如此,数学也不例外。数学中的这个“祖宗”就是课本,因为所有的学习知识都来自课本,考试的内容比课本要高一些,但是基础知识点不会变。考题是课本知识的衍生品。要一点一点挖掘考题背后的`东西,找出哪一部分是考试的重点。所以,课本不能丢。不能一味的做一些试题,而忽略了课本的根本。尤其是在学习新知识的时候,一定要确定自己理解了课本的知识点和例题,认真做好书后的每一道习题,这样才能基本掌握这部分知识。
到了暑假,相信很多同学都会预习一下要学的东西。很多同学在预习数学的时候有一个误区,就是认为我是看完一本书才预习的。我觉得只有在看书的基础上能把课本各节的配套习题解出来,才算真正的预习,因为数学知识的掌握终于合适了,现在在解题。
二、学会正确:
在学习数学的过程中,每个人都会犯错误。犯错是正常的,并不可怕。可怕的是很多同学一错再错,这涉及到正确的问题。暑假比较充裕,是我们的好时光。但是,数学错误的改正,绝对不是简单的用红笔把数字改正。正确的做法是,先找出自己错在哪里,是自己对题目的分析有问题,还是计算的过程中有错误。其次,你要把自己的错误记在心里,时不时地加强记忆,纠正头脑中的错误想法。有条件的话,家长可以把孩子每天的错误抄在单本上,定期让孩子再做一遍,效果会更好。
三、做好总结:
学后总结是学习的重要一环,总结是知识升华的过程。很多同学也知道总结,但是很多人不知道需要总结什么。在这里,我建议同学们利用暑假总结以下几点。
1.总结旧知识的知识结构。数学每一章都有知识体系。大家要总结这个知识体系,用它来记忆和掌握数学的各种定理和知识点。
2.总结一下自己的一些易错点。可以回忆一下自己犯过的错误,看看自己哪里有重复的问题。往往反复出现的问题都是自己的学习漏洞。如果计算有问题,要加强自己的计算能力。如果你的知识有漏洞,就要重新复习知识,适当的用你的知识做一些练习。
总之,要想取得好的学习成绩,毅力和好的学习方法缺一不可,数学也不例外。也可以利用假期总结一些适合自己的学习方法。
关于数学学习计划 篇6
要学习好,首先要制定一个切实可行的学习计划,用以指导自己的学习。古人说:“凡事预则立,不预则废。”因为有计划就不会打乱仗,就可以合理安排时间,恰当分配精力。
具体计划
1、学习的目标明确,实现目标也有保证。
学习计划就是规定在什么时候采取什么方法步骤达到什么学习目标。短时间内达到一个小目标。长时间达到一个大目标。在长短计划指导下,使学习一步步地由小目标走向大目标
2、恰当安排各项学习任务,使学习有秩序地进行,有了计划可以把自己的学习管理好。
到一定时候对照计划检查总结一下自己的学习,看看有什么优点和缺点,优点发扬,缺点克服,使学习不断进步。
3、对培养良好的学习习惯大有帮助。
有了计划,也有利于锻炼克服困难、不怕失败的精神,无论碰到什么困难挫折也要坚持完成计划,达到规定的学习目标。
4、提高计划观念和计划能力,使自己成为能够有条理地安排学习,生活、工作的人。
这种计划观念和计划能力,学生都应该学习和具备,这对一生都有好处。
在进行时间安排时,还要注意以下两点:
1、要突出重点 也就是说,要根据地自我分析中提出的学习标点或比较薄弱的学科在时间上给予重点保证。
2、要有机动时间,计划不要排太满太紧,贪心的计划是难以做到的。
计划二:新学期数学学习计划
关于数学学习计划 篇7
后进生在学习上总的特点是智力一般,学习依赖思想严重,没有独立思考勇于创新的意识,遇到较难的题便等老师的答案,针对这一实际情况,我首先要想方设法调动学生的学习积极性,更重要的.是做好后进生的转化工作。在工作中,我十分重视对学生一视同仁,不溺爱优秀生,不鄙视后进生,故此制订出转化计划如下:
一、利用家长会,汇报该生在校的学习情况,让家长协助教师教育和督促自己的孩子努力学习,多做数学练习题,加强数学概念、公式的理解。
二、课后多和后进生交谈,态度要和蔼,使后进生愿意接近老师,经常和老师说说心里话,有利于老师对学生的了解,有利于做好后进生的转化工作。
三、开展互帮互学的活动,座位的排列尽量让中、后进生创设一个好的学习环境,充分发挥课后“小老师”的榜样作用。
四、对后进生的缺点批评要恰当得体,切忌不可伤害,不能让其他同学嘲笑他们,嫌弃他们。
五、分层次设计目标,给后进生制订能够完成的目标,使其能真正感到成功的喜悦。
六、利用课余时间帮助后进生辅导,尽力使他们的成绩有所提高,让他们认识到“我能行”。
总之,我不但要在学习上关心后进生,还要在生活上关心每一个后进生的成长,使每个后进生真正感到班集体的温暖,激发他们的求知欲,使每位同学在德、智、体、美等方面均能得到全面发展。
关于数学学习计划 篇8
一、具体措施:
1、认真梳理教材知识点,加强重难点知识的整理复习。
2、认真批改作业、督促学生及时订正作业,查缺补漏。
3、加强计算训练,提高计算本事。
4、加强后进学生的辅导工作,不断促进其提高。
二、复习的主要目标
1、经过总复习,使学生获得的知识更加巩固,计算本事更加提高,能用所学的数学知识解决简单的实际问题,全面到达本学期规定的教学目标。
2、引导学生主动整理知识,回顾自我的学习过程和收获,逐步养成回顾和反思的习惯。
3、经过总复习使学生在本学期学习到的知识系统化。巩固所学的知识,对于缺漏的知识进行加强。
4、经过形式多样化的复习充分调动学生的学习进取性,让学生在生动趣味的复习活动中经历、体验、感受数学学习的乐趣。
5、有针对性的辅导,帮忙学生树立数学学习信心,使每个学生都得到不一样程度的进一步发展。
三、复习的具体设想
1、首先组织学生回顾与反思自我的学习过程和收获。能够让学生说一说在这一学期里都学了哪些资料,哪些资料最趣味,觉得哪些资料在生活中最有用,感觉学习比较困难的是什么资料,问题银行中还有什么问题没解决,等等。也能够引导学生设想自我的复习方法。这样学生能了解到自我的学习情景,明确再努力的目标,教师更全面地了解了学生的学习情景,为有针对性地复习辅导指明方向。
2、以游戏活动为主进行总复习。游戏是一年级儿童最喜欢的活动。游戏让学生在玩中复习,在复习中玩,在玩与复习相结合中发展。如复习100以内数的认识,让学生玩猜数、对口令、接龙等游戏,加深数感。又如加减法计算的复习,不能出现单纯的题海练习,这样学生会厌倦的。能够设计爬梯子、找朋友、等游戏活动,学生边玩边熟练加减法的正确计算。
3、与生活密切联系。复习时同样要把数学知识与日常生活紧密联系。能够设计一些生活情境画面给学生用数学的眼光去观察,提出数学问题,解决数学问题。能够让学生到生活中寻找数学问题,然后在全班中交流。学生不仅仅感受生活即是数学,数学即是生活,并且各方面都得了发展。
4、以实践操作为主进行总复习。实践操作是本班学生最喜欢的数学学习活动形式
四、复习时间安排
1、回顾与反思本学期的学习情景3课时
2、总复习课时:
第一课时:20以内退位减法(补充课本第99页第7题)
第二课时:100以内数的读写、加减法(课本第98页第1、2、3、4、5、6题,补充。)
第三课时:元、角、分的认识,时、分的认识(课本第99页8题,100页9题,补充。)
第四课时:位置与图形、统计(课本第100页第10、11题,第101页,第105页)。
第五课时:总复习(课本第102页第1、2、3、4、5、6、题,第103页、第104页)。
关于数学学习计划 篇9
1、首先要会学习,好的学习方法是努力抓好学习中的各个环节:预习、听讲、复习、总结、考试。课前预习,才能做到有针对性的听讲,带着问题听讲,高质量的听课是中学数学学习的基础和关键,课后复习总结是学习过程的升华,认真完成作业时它的重要体现,不要忽视每一天的作业,正所谓细节决定成败!只有落实好前面的学习任务,加之以一颗平常心、自信心对待考试,才可能在考试中立于不败之地。
2、积极培养自主学习习惯。初一课程设置较小学要多出很多,作为老师,要培养学生独立自主的学习习惯,作为学生更要主动适应学习习惯的改变,要及时主动地发现问题,解决问题,不要将今天的问题过夜!否则后患无穷,要总结出一套适合自己的学习计划,定期检查和回顾其实施情况。
3、学会取人之长,补己之短。在你的身边一定有一些学习较轻松,成绩又好的同学,多向他们学习好的学习方法。要做的一项具体的工作时,准备一个"好题本",随时收录一些解题的好方法,以及自己曾做错的习题改正。几年下来你会发现,你的学习会有飞速的提高,你的解题思路也被有效的打开了,更可贵的事,到中考前,你可以拿出来有针对性的复习,对你来说,只有"它"才是最有针对性的!这样岂不是事半而功倍。
关于数学学习计划 篇10
话说每当临近十一的时候,咱们同学都会迸发出惊人的爱国热情,对国庆节这个日子非常的期待。当然,这一方面是因为我们真的非常热爱祖国,另一方面应该是因为国庆节意味着:放假啦!实际上,大家应该对国庆假期有一个正确的认识。
一方面,国庆是我们的一个缓冲时间,刚刚步入高中,同学们承受了来自各方面的压力,比如很多同学没有对高中的知识有一个正确的定位,所以一开始很不适应高中密集繁杂的知识体系;还有的同学初中成绩比较好,到了新环境之后发现自己排名和初中差距比较大,很难接受这样的心理落差。在学校上学期间繁重的学习压力让同学们无暇调节自己的心理,十一这么长的假期刚好可以给同学们一个心理调整的机会。
另一方面,国庆节对于我们高一同学来说是最好的一个学习机会。一转眼高中生活也已经过去一个月了,我们同学也学过了一部分高中知识。我相信大家都应该发现高中的知识比初中要难得多。一开始大家的学习成绩都不会太稳定,这很正常,不过现在摆在大家面前的一个很重要的问题就是:今后我们学习的东西会越来越多,现在如果是因为不适应而没有打好基础,那什么时候把知识漏洞补回来呢?最好的机会就是国庆假期。刚刚开学,我们同学学的知识不算太多,十一国庆七天完全可以复习过来,对于成绩落后的同学可以迎头赶上,成绩已经不错的同学也可以更进一步。而且之后的函数性质,幂函数、指对数函数等等知识都非常复杂,需要我们利用假期时间好好预习。
具体地说,针对数学学科我希望同学们可以充分利用起来,哪怕每天只用半天时间学习也是非常有效的,下面给出一个建议的学习安排,希望对同学们有帮助。希望同学们可以抓紧高中阶段第一个长假努一把力,抓住时间的人将取得最后的胜利!
关于数学学习计划 篇11
不知不觉又到了一学期的末尾,为了让学生能正确认识、理解、掌握一年级这学期的数学知识,在组织总复习时,我是这样考虑的:
1、引导学生主动整理知识
一年级的学生,他们学习数学处于起步阶段。为了使学生养成良好的学习习惯,提高他们整理与复习的能力,教师可以根据复习的内容,适当地引导学生主动地整理知识。
如在复习方位与图形时,可以请学生自己说一说学了哪些立体图形以及在生活中哪些物体的形状是长方体、正方体、球、圆柱体。这样,学生在思考这些问题时,就需要结合自己所学的知识进行整理。
2、开展多种形式的复习
根据一年级学生的年龄特点,在组织复习时,要充分考虑到低年级学生学习的需求,尽可能设计一些生动活泼的练习内容,以调动每个学生学习的积极性。如在复习20以内数的加减法时,我除了适当地安排一些算式的计算练习外,也设计了一些小游戏的活动,像“找朋友”“开火车”等活动,都是学生比较喜爱的活动,这样,既能调动学生学习的兴趣,又能达到复习的效果。
3、要让学生的思维“活”起来。
以往的复习课,基本上以单调的训练为主,在设计时我改变了以往的形式,以游戏贯穿全课,把所学的知识巧妙地融入到一个综合的活动中。如站队时的前后位置,图形的分类、口算等,学生一边玩,一边回顾,一边应用,增强了趣味性。通过一系列的活动、操作,学生的思维“活”起来了,认识也会随之提高。
4、关注学习有困难的学生
由于每个学生的家庭背景、学前教育、生活积累以及认知能力等方面的差异,学生很可能会产生学习理解的差异。因此,这就需要教师在复习时考虑到学生个性的差异性,安排不同层次的练习,特别要关注学习有困难的学生。
如在复习计算时,可以根据不同学生的需求,多安排一些练习题。一般的学生要保证基本要求做一些基本形式的练习,而比较优秀的学生可以增加一些富有思考性的练习。这种课堂分层次的练习,可以满足不同层次学生的需求。对于学习有困难的学生,教师应有针对性地辅导,从而使所有的学生在复习的过程中都有所提高。
关于数学学习计划 篇12
学生主要是以预习七年级第二学期内容为主,以便对下个学期进一步的学习数学知识有一个更明确的把握,了解数学学习的连贯之处。通常七年级学生刚刚从小学进入初中,还不太适应初中的学习方式。小学阶段,学生主要以模仿式学习为主,而进入中学后则完全不一样,要求学生必须要学会自己独立学习,独立思考。
七年级学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。那到底该如何预习呢?预习的步骤有哪些呢?
一、粗读。
先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的基本框架,同时了解新课的重点和难点。
二、细读。
对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。
三、细心地挖掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:
一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?那就要求你做到:
一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;
二列:列出相关的知识点,标出重点、难点,列出各知识点之间的网络关系,这相当于写出总结要点;
三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
四归:归纳出体现所学知识的各种题型及解题方法。
五编:根据所总结的内容编一些顺口溜;如:总结不等式组解集时,“大大取大,小小取小,大小小大中间找,大大小小找不着。”证明成比例线段时,可总结为“遇等积化等比,横看竖看定相似,不想死,别生气,等线等比来代替;遇等比化等积,想到射影与圆幂” 。
总之,七年级是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,家长督导和学生自觉学习相结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法,为日后进一步进行数学学习打下良好的基础。
关于数学学习计划 篇13
一、指导思想
高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.
“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的'清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.
二、时间安排:
1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。
3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。
关于数学学习计划 篇14
自我们学院成立,各项学生工作都不断地由系向院的规模发展,在老师和同学们的共同努力下,各项工作都取得了不少进步,数学学院学生会学习部工作计划。学生会当然也基于原来的规模发展壮大了许多,而学生的天职就是学习,为大家营造好的学习氛围很有必要性,因此学习部成为学生会不可或缺的部门之一。
我院学生会学习部正处于急需发展进步、迈向更高层次的过程中,虽有一定优势存在,但也有些需解决的问题。目标与任务在学习部现有的基础之上,从下届新生中吸收强势的新鲜血液组成新的学习部团体,完成自身的换届更新。继续开展以前部内优秀的活动项目,策划新的特色活动。同时,努力做好由学院、主席团下达的各项任务,配合其他部门的工作开展。力争成为让学院老师、主席团、同学们满意的部门。
现状的分析。
一、 现有的优点:
(一) 学习部由主席团一名成员直接负责管理,有利于加强上下之间的联系与交流,便于两者的工作开展。
(二) 由学习部组织或配合学院、团委的工作,如先进班集体的创建与评比、学风建设月活动,督促各年纪各班努力向优秀班集体发展。
(三) 学习部能够在很大程度上配合其他部门活动、工作开展,可以体现出学生会团结合作的意识。
二、 尚存的问题:
(一) 部内自身的发展和部员的管理有待改善,需从下届新生中选拔着实负责的成员,增加工作效率。
(二) 学习部与学院各班学习委员交流甚少,没有达成相互沟通以进步的意识,需及时向学院老师传达院学生的学习情况。
(三) 学习部与其他部门的关系仍有待进一步加强。
(四) 活动需要更多创新与时效性,抓住时间、考试安排(如英语四、六级考试,计算机考试)等各种契机进行,工作计划《数学学院学生会学习部工作计划》。解决方式与措施一、 加强人员组织与管理:从下届新生中选拔新成员6人(争取每班一人)组成新的学习部;组织各班学习委员成立院学习委员会,旨在了解和督促各班学习情况。
(一) 部内成员职责:积极参与学生会各项活动,自觉自主地加强与其他部门的交流;负责学习部活动项目和日常工作;掌握本班的学习状况,与本班学习委员负责班内的学习风气建设;严谨自我,做好学习部榜样。
(二) 学习委员会职责:认真负责班内的学习工作,掌握所有班内学生的学习状况,加强班级学风建设;定期召开交流工作会议,向学习部提交班内学习状况总结;做好日常中老师和学生们的串接工作。
(三) 学习部考核与评优制度:1) 每次例会不得迟到,早退或无故缺席.迟到或早退两次视作缺席一次;(请假需提前)学期请假次数不得超过会议总数的三分之一,否则取消其评优资格;
2) 每次由学习部主办的活动后,部员需提交活动个人总结;
3) 部员在活动中的积极性良好,团结协作努力办好每一次活动;
4) 与班级学习委员的交流情况:根据班级学风考察;
5) 鼓励优秀活动创意和想法,要求部员培养实干能力;
6) 评选优秀的方式为部内8人不记名投票和平常考察综合决定。
三、 第一学期活动安排与简单方案
(一)学习部日常工作:1) 召开部内工作例会(每两周一次,紧急情况除外),分配近期工作任务,落实到每位部员;
2) 召开学习委员会议(每月一次),交流讨论班级的学习和上课状况,对班级的近期学习情况进行总结和计划。
3)配合协助团委开展先进班集体创建工作。
(二)本学期流程活动安排09年9月:开展对新生的入学教育 在学院老师为新生介绍学校各方面情况时,提醒他们加入鼓励大一新生们在大学里好好学习的专题,强调大学学习的重要性和必要性,让他们在入学之时就奠下学习的思想基础。
关于数学学习计划 篇15
一、 预习。
预习一般是指在老师讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。所以预习就是自学。
预习要做到下列四点:1、通览教材,初步理解教材的基本内容和思路。
2、预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。
3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。
4、做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。
二、上课。
课堂教学是教学过程中最基本的环节,不言而喻,上课也应是同学们学好功课、掌握知识、发展能力的决定性一环。
上课要做到:1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。
2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。
3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。
4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。
5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。
6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。
7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。
8、要养成记笔记的好习惯。最好是一边记一边听,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,供课后复习时参考。
三、作业。
作业是学习过程中一个重要环节。通过作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧,从而发展自己的智力,培养自己的能力。作业必须做到:
1、先看书后作业,看书和作业相结合。只有先弄懂课本的基本原理和法则,才能顺利地完成作业,减少作业中的错误,也可以达到巩固知识的目的。
2、注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学和知识,找到解决问题的途径和方法。
3、态度要认真,推理要严谨,养成“言必有据”的习惯。准确运用所学过的定律、定理、公式、概念等。作业之后,认真检查验算,避免不应有的错误发生。
4、作业要独立完成。只有经过自己动脑思考动手操作,才能促进自己对知识的消化和理解,才能培养锻炼自己的思维能力;同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。
5、认真更正错误。对于作业中出现的错误,要认真改正。要懂得,出错的地方正是暴露自己的知识和能力弱点的地方。经过更正,就可以及时弥补自己知识上的缺陷。
6、作业要规范。解题时不要轻易落笔,要在深思熟虑后一次写成,切忌涂改过多。书写工整,步骤简明有条理,完整无缺。作业时,各科都有各自的格式,要按照各学科的作业规范去做。
7、作业保存好,定期将作业分门别类进行整理,复习时,可随时拿来参考。
关于数学学习计划 篇16
一、分析与策略
学生进入初中已经一年了,学生水平参差不齐的情况愈演愈烈,两极分化严重。因此,教师如何大面积提高学生的数学成绩,使其从怕学、厌学、学不到转变为会学,是一个难题。这就要求我们的数学教师要根据学生的实际情况,因地制宜,以学生为主体。除了教学,还要研究当前数学发展和教学的新趋势,深入研究教材,认真分析学生,研究新的教学手段和方法。总之,要把教学和科研有机结合起来,因材施教,积极稳妥地进行教学改革,利用学校先进的多媒体优势,努力提高每个学生的数学水平。现制定以下工作计划:
1.特别要注意“备课”和“上课”这两个中心环节。在集体备课的基础上,充分发挥个别教学带头人的作用,从而更有效地提高课堂教学效率。在教学中,要不断反思教学,形成不断反思、不断调整、不断提高的教学风格。
2.教研组老师互相倾听,互相学习,开阔视野。
3.多用途多媒体教学加快改革步伐。
4.做好单元复习和测试,尽量清晰。
5根据学校和教研组的要求,编写教学计划,上传课件。
6.做好培养优秀学生和弥补差生的工作,把这项工作渗透到每一个班级。对于数学基础不好的同学,及时解决问题或者填补空白。
二、理解与思考:
1.主题来自生活:教学应以学生的生活为基础
学生的学习热情和积极性很大程度上取决于他们对呈现材料的兴趣。选择他们身边熟悉的例子,不仅可以极大地调动学生的学习积极性,还可以长时间保持知识,从而加深理解,为进一步的知识建设打下良好的基础。
2.突出问题解决:让学生体验探索数学知识的过程
图书馆解题是数学活动的核心。围绕解决问题的过程,学生可以体验到观察、猜想、验证、推理、交流等丰富的数学活动,努力体现“问题情境——建立数学模型——解释、应用、发展”的模式。不仅可以了解一个数学问题是如何提出的,数学结论是如何得出的,而且通过这个充满探索和独立经验的过程,学生可以逐渐学习数学思维方法以及如何利用数学解决问题,获得成功的经验。
3.给足空间:改善学生的学习方式
数学课程标准指出:“学生的数学学习活动应该是一个生动、活跃、个性化的过程。”“动手实践、自主探索、合作交流是学生学习数学的重要途径。“展示小组活动、合作学习和民主学习的氛围。通过每节课的教学,让孩子“在探索的过程中形成自己对数学的理解,在与人交流的过程中逐渐完善自己的想法”,而改善学生的学习方法才是最根本的。
4.精心设计问题:培养学生的问题意识
学生能否从数学的角度观察生活和周围的事物,从而发现和提炼有价值的数学问题,是其数学意识的重要标志。学生的问题意识越强,对数学现象、原因、规律和关系的探索就越深入、充分、独特,就越有利于学生个性的发展。培养学生提出问题和解决问题的能力是教学目标的重要组成部分。
5.建立良好的师生关系
时刻严格要求自己,不断提高自己的专业素养、理论素养、道德素养,真正做到以情打动人,以理服人,以德感动人。
关于数学学习计划 篇17
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲跟要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识跟方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习跟分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
四、重点难点突破
对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点跟易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
五、复习效果检测
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。