高三数学考试分析总结(精选22篇)
高三数学考试分析总结 篇1
一、努力提高课的质量,追求复习的最大效益
1、认真学习新课改的考试说明和考试纲要,严格执行课程计划,确保教学进度的严肃性、高三年级在明确学期教学计划的基础上,本学期以来经常进行备课组群众备课,教学案一体化,将长计划和短安排有机结合,既体现了学期教学的连贯性,又体现了阶段教学的灵活性。
2、准确定位复习难度,提高课堂复习的针对性。我们把临界生这个群体作为高考复习的主要对象,根据临界生的知识结构,潜力层次来设计课堂教学,不片面地追求"高,难,尖",而是在夯实基础的前提下,逐步提高潜力要求,从而突出重点,突破难点。
3、不断优化课堂结构,力促课堂质量的有效性。首先,针对复习课特点,明确复习思路,构建了二轮复习"四合一"的课堂模式:潜力训练+试卷讲评+整理消化+纠错巩固。潜力训练做到在一轮复习的基础上,排查出学生的考点缺陷,有针对性地进行强化训练;试卷讲评做到在错误率统计和错误原因分析的基础上进行讲评,讲评的对象明确定位为中转优学生,评讲效果的衡量标准就是看中转优学生有没有真正搞懂;整理消化首先确保各学科当堂消化的时间;错误率较高的题目在必须的时间长度内,以变形的形式进行纠错巩固训练,同时在周练中予以体现、
二、让学生切实做好题,发挥训练的最大功能
1、实行"下水上岸"制,提高练习质量。"下水"是为了"上岸",教师做题是为了选题。为此,本人对给学生做的题目自己先过一遍,加强对选题的工作,练习材料没有照搬现成资料,同时整个年段的题目是备课组群众研讨而成;要先改造,后使用,力求做到选题精当,贴合学情。
2、有效监控训练过程,确保训练效度、训练上个性重视训练的计划性,明确每周训练计划、认真统计分析,对于重点学生更是面批到位、指导学生进行自我纠错,并定期进行纠错训练、此外,对考试这一环节,严格考试流程,狠抓考风考纪,重视考试心理的调适,答题规范化的指导和应试技能的培养,努力消除非智力因素失分。及时认真地做好每次考试的质量分析,并使分析结果迅速,直接地指导后面的复习工作。
3、强化基础过关,实施分层推进、针对学生基础相对薄弱的现状,实施基础题过关的方法,在夯实基础的前提下,实验班适当提升训练难度,同时实行必做题和选做题的分档训练。这一举措对学生成绩的提高取得了良好的效果。
还有很多做得不够的地方,我必须持续谦虚谨慎,戒骄戒躁的作风,在今后的工作中扬长避短,不断进步,不辜负领导和家长们对我的信任,在来年再创佳绩。
高三数学考试分析总结 篇2
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4、证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
高三数学考试分析总结 篇3
本学期我担任高三两个班的数学教学工作,经过一个学期的努力,两个班在前几次月考中都取得了比较好的成绩。高三的学习是紧张的,一学期的时光过得很快,回顾这一学期的工作,我主要从以下几个方面对本学期教学工作情况作如下总结:
1、备课:研读考纲,梳理知识。根据课标要求,提前备好课,写好教案。备课时认真钻研教材、教参,学习好大纲,虚心向同年组老师学习、请教。力求吃透教材,找准重点、难点。积极参加教研室组织的教研活动,老教师的指导和帮助下进行集体备课,仔细听,认真记,领会精神实质。
2、上课:重视课本,狠抓基础,构建学生的良好知识结构和认知结构。上好课的前提是做好课前准备。上课时认真讲课,力求抓住重点,突破难点,精讲精练。运用多种教学方法,从学生的.实际出发,注意调动学生学习的积极性和创造性思维,使学生有举一反三的能力。课间巡视时,注意对学困生进行面对面的辅导,课后及时做课后记,找出不足。
3、辅导:精心选题,针对性讲评。
利用课余时间对学生进行辅导,不明白的耐心讲解,教给他们好的记忆方法,好的学习习惯,做到对所学知识巩固复习,及时查缺补漏。
4、作业:狠抓常规,强化落实与检查。
认真布置、批改作业。在教学中布置作业要有层次性,针对性。并认真批改作业,做到有质量全批,在作业过程出现不同问题及时作出分类总结并记载下来,课前分析讲解。并针对有关情况及时改进教学方法,做到有的放矢。由于高三的课业负担较重,1我只布置适量作业,利用好订的学案,且作业总是经过精心地挑选,适当地留一些有利于学生能力发展的、发挥主动性和创造性的作业。
5、个人学习:充分发挥集体备课的优势,积极学习其他教师的各种教育理论,以充实自己,以便在工作中以坚实的理论作为指导,更好地进行教育教学。坚持每周集体备课,认真听课,探讨课堂优化教学,有时探讨专题,群策群力,并主要做法:
(1)每周每位教师轮流出一套滚动试题;
(2)每周至少小测一次;
(3)每月或每单元大测一次;
(4)每次月考组织高三综合测评一次;
(5)总结,反思。
以上是我这学期的工作总结,还有很多需要完善和改进的地方,我将继续努力,虚心求教,争取下学期取得更圆满的成绩。
高三数学考试分析总结 篇4
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:
①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
高三数学考试分析总结 篇5
1、三类角的求法。
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱。
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中。
3、怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
高三数学考试分析总结 篇6
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0?;a-b=0?;a-b0,则有>1?;=1?;b?;
(2)传递性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可开方:a>b>0?(n∈N,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:①a>b,ab>0?b>0,0;④0
(2)若a>b>0,m>0,则
①真分数的性质:(b-m>0);
高三数学考试分析总结 篇7
本学年本人担任高三年组数学教师,教课班级为4班、7班和27班三个班级,随着高考的结束,本学期教学任务圆满结束,我所教三个班都是普通班或复习班,学生的基础普遍是偏差的。高考数学试卷的特点是难度大,区分度大,高考所占权重大,数学也是高三学生最重视的学科。高三数学的教学直接关系着全校考生高考的成绩,数学教师的责任是重大的。下面就以下四点对本学期的教学工作进行总结:
一、任课班情
本学期所教授的三个班级具体班情各不相同:4班是普通文班,班主任是黄立学老师;7班是普通理班,班主任是刘永贺老师;27班是补习文班,班主任是陈秀娟老师。由于本人工作时间短的原因,在本学年之前,没有过文科班班级以及补习班班级授课经验,所以本学年尤其是刚开始的时候,面临着不小的压力与挑战,好在授课班级的三位班主任老师对工作积极负责,在工作上给予了我非常大的帮助,使我能短期内迅速适应班级特点,开展教学工作。
二、任课学情
我所教的三个班级,27班是文科补习班,相对学生比较重视该科,上课的时候比较认真,大部分学生都能专心听讲,课后也能认真完成作业。但是教授补习班就应该为学生的升学负责,他们之所以选择了复读,就是为了考取一个更好的大学,为此我们责无旁贷。对此,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。与此同时,为了提高同学的学习积极性,开展了学习竞赛活动,在学生中兴起一种你追我赶的学习风气;4班是一个普通文班,本班数学底子很是不好,先后换过三任数学教师,但是本班有几名学生智力、反映都很不错,为此如何提升他们的成绩,以此调动班级成绩,是本学年的一个问题。另外,本班由于差生面太大了,后进生基础太差,考试成绩都很差,有些同学是经常不及格,调动提高他们的学习积极性、提升他们的数学成绩,是本学期工作的重难点;7班是普通理班,接手之前成绩也一直不太理想,分析原因,是因为本班学生成绩分化严重,形成了明显的几个梯队:学习靠前的梯队整体成绩都不错,但没有十分拔尖的学生。后续梯队干劲明显不足,被前面的同学落下了很大一截。后进生对学习数学的兴趣不高,因此如何提高后进生的学习兴趣,拉近梯队间差距,成为本班的工作要点。
三、任课教情
对于27班,由于班级学风相对不错,本班的工作主要是巩固基础知识,并提高做题的量与难度,在与普通班一样完成正常的教学任务之外,我还组织他们做了对应的数学报纸,并且进行了讲解。在平时的时候,注重培养学生高考的`读题解题能力,期望他们能在20xx年的高考中取得更好的成绩;对于4班,我的具体措施是找同学适当的谈心,让学优生之间互相竞争,以此来带动整个班级的数学学习气氛,对于后进生尤其是艺体特长生,我尽可能的发现他们的闪光点,及时给予表扬,课下经常与他们谈心,帮助他们明确学习目的,从学习上主动辅导他们,使他们不断进步,变被动学习为主动学习,让他们更有自信心;对于7班,学优生的问题不大,在他们学习松懈的时候,给予适当的提醒就可以了,关键难点在于如何提高后进生的学习积极性,拉近梯队间的差距。为此,我采取的措施是适当放慢本班的教学进度,尽可能更翔实明确的教学生如何读题、如何解体,注重学生做题及运算的能力培养,使大部分学生学习不掉队,后进学生不放弃。
四、教学具体措施
1、注重培养学生做选择填空题的能力
虽然高考中选择填空题占了80分,但它难度不是很大,高考考它们的方向是基础与全面,为顾及到各层次的考生(包括艺术类,体育类考生)高考一定要考基础,考试的知识点覆盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有2-3道难度大的题就足够了,因此做好选择填空,是大部分学生得高分的关键因素。所以复习时,我注重培养学生自己的数学读题解题能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。从今年的高考实际看,选择填空题的难度不大,得满分的不少。
2、重视解答题。
我们在复习中提出重视解答题,同时不能丢了选择填空题,一定要求学生努力做解答题。因为从历年的高考看,高分学生成绩的好坏最终取决于解答题。所以在实际教学中我侧重解答题的教学,用较多的时间分析讲解解答题,给学生充分的时间去做解答题,如复习立体几何或解析几何时减少习题数量,每天就要求学生就作3-4道解答题,对学生区别要求,差一些的学生可以再少做一些,鼓励学生一定要努力做解答题。
3、握好高考的方向。
高考试卷的型式:22道试题,12道选择题,4道填空题,6道解答题,各题的得分比例都与去年的考试中心的命题试卷雷同。各章考查知识点在试卷中的比率与6个解答题的考查方向,都与去年考试中心的试卷的相似。我就是以这样的思想来指导高考复习。也就是说以去年的考试中心的6道解答题主要考查方向是我们复习的主攻方向。其中,数列与三角的题目没有办法预测,我们都进行了大量的训练,结果也是很不错,今年的文理试卷分别各考了一道大题,学生没有因为没复习到而影响高考的发挥。唯一遗憾的是,以往每年的不等式题,都是以解不等式的形式出题,今年一反常规,考了不等式的证明,我们在最后的三轮复习中,相对练的较少,部分学生答题出现困难。这更提醒我们在今后的教学中要更加深入的研究高考方向。
高三数学考试分析总结 篇8
高三上册数学知识点整理
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
人教版高三数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
高三数学考试分析总结 篇9
三角函数。
注意归一公式、诱导公式的正确性。
数列题。
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的`式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题。
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题。
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+……+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
正弦、余弦典型例题。
1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
2、已知α为锐角,且,则α的度数是A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是A、75°B、90°C、105°D、120°
4、若∠A为锐角,且,则A=A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。
正弦、余弦解题诀窍。
1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。
2、已知三边,或两边及其夹角用余弦定理
3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
高三数学考试分析总结 篇10
在校领导的关心下,李海军主任的指挥下,15届高三取得了辉煌的成绩,下面我就以下具体做法汇报如下:
一、思想方面
1、正确的指导思想,合理的教学计划是优秀成绩的保障。在高三开学前李海军主任定制好了实验班整个学年的工作计划以及工作重心。针对不同时期学生不同特点,定制好了对应的教学任务。
2、统一思想。平常教研活动中,由王国平老师布置安排工作,在工作计划制定前,大家一般否会献计献策,踊跃发表自己的观点,甚至会有争论,但是当计划制定后,不论是赞同的该计划的还是反对该计划的,我们都会坚定不移地执行下去,确保工作顺利完成。(整理专题,整理错题,整理试卷的方式方法等。)
二、教学工作方面
常规教学方面:
1、进度快。教学工作高效完成。15届数学组是高二上期开始加快教学进度的,5月份结束高三课程,利用暑期辅导,11月份一轮复习结束。我们正常教学时间不能缩短,只能在其他方面做出尝试,主要是缩短试卷、作业讲评时间,集中学生共性问题进行讲解,有些题目只提思路,不详细讲解。同时配备详细答案,学生可自行参阅。就是因为进度快,为我们后期的工作安排提供了时间上的保障。
2、一轮复习。中规中矩。实验班的话因为主要目的是清北,所以在一轮时就在解析几何和导数两节着重讲解,我整理了近三年各地市高考真题及模拟试题,汇编了不同题型,对经典热点题型进行着重讲解及练习,并及时依据学生作业及考试反馈的情况有针对性的讲评。
3、后一轮复习。一轮复习后学生普遍掌握了基本知识,基本技能,但是知识有遗忘,不熟练,应试技巧时间整体把握不足,因而设置一个“沉淀期”。期间每周三考,做到试卷批改不过夜,第一时间对试卷进行讲评。试卷类型有名校联考试卷,自编自整试卷,错题汇编试卷。难度上控制为两难一易。
通过考试,给予学生时间消化一轮知识,同时深化学生对知识的理解,老师并对学生答题规范做出要求。通过这一阶段学生考试的时间如何安排,应试突发事件处理上的能力有所提高。考试成绩有了质的飞跃。
4、二轮复习。中规中矩。我整理了各个专题,加深学生对知识体系的把握,同时注意知识点间的联系。实验班仍然注重导数和解析几何,同时配以大量练习,小卷或者考试。
5、二轮复习后。大约4月中旬到5月中旬期间,很多学生出现了“高原期现象”,包括不少种子选手,这个时期我的工作重心转移到了如何帮助学生克服心理上的障碍,我利用下午自习课,或者课外活动时间等一切可以利用的时间对学生进行心理疏导工作,同时每周对种子选手进行座谈会,解决心理学习上的各种问题。经过一段时期的调整,孩子们回到了巅峰状态,也迎来了高考,都取得了很好的成绩。
一分耕耘一分收获,经过高三的努力工作,最终得到了丰硕的回报。宏志班在高考中表现优异,其中5人考入清华北大。
竞赛方面:
15届竞赛基本上是从高二开始加强训练的。整个高二后暑期期间,我每天都是上午和下午备课和出题,学生下午考试,晚上讲卷,通过大量甚至可以说是超负荷训练,学生最终取得了优异的成绩,其中朱智斌同学和申奥同学获得省一等奖,另外7人二等奖,5人三等奖。
三、细节把握
1、从始至终重视书写与格式。
2、注意学生的心理健康。
3、注重学生的坏习惯的改正。
4、尖子生单兵较量
5、科学的成绩分析(先进的教学设备)
四、不足之处
复习时,尤其是一轮复习,不要凭历史经验来妄加猜测什么是重点什么不考,也不要觉得知识简单而略讲或不讲,一定要在一轮复习时涵盖所有的知识点。
高三数学考试分析总结 篇11
Card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1.集合元素具有①确定性;②互异性;③无序性
2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n-1;
非空真子集数:2n-2
高三数学知识点2
两个复数相等的定义:
如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R时,a+bi=0
a=0,b=0.
复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
复数相等特别提醒:
一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
解复数相等问题的方法步骤:
(1)把给的复数化成复数的标准形式;
(2)根据复数相等的充要条件解之。
高三数学考试分析总结 篇12
必修一
第一章:集合和函数的基本概念
这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数
——指数、对数、幂函数三大函数的运算性质及图像
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
第三章:函数的应用
这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。
必修二
第一章:空间几何
三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
第二章:点、直线、平面之间的位置关系
这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
第三章:直线与方程
这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。
第四章:圆与方程
能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。
必修三
总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。
程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。
秦九韶算法是重点,要牢记算法的公式。
统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。
概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函数
考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。
第二章:平面向量
向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。
第三章:三角恒等变换
这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。
必修五
第一章:解三角形
掌握正弦、余弦公式及其变式、推论、三角面积公式即可。
第二章:数列
等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。
第三章:不等式
这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。
高三数学考试分析总结 篇13
第二部分函数与导数
1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;
⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
高三数学考试分析总结 篇14
一、备考具体措施(成功之处):
1、充分利用理科数学备课组的人员和资源优势,进行集体备课,提高了复习备考质量和效率
高三文科组只有3位老师,负责6个班,准确把握复习方向、收集信息、准备讲义、练习和试题,及时改卷及分析等任务重,就要充分利用理科数学备课组的人员和资源优势,进行集体备课,提高备课质量,而文科数学备课组将更多精力集中在文理差别内容和文科学生特点的研究上。而且命制每次月考、模考试题也是文理备课组通力合作,精心打造文理两份姊妹题。
文理备课组统一做到资源共享,加强备课的交流,注重相互协作,强化集体备课,做好每单元的教学进度、内容、深度、广度统一;集体备课,教案基本统一,同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透思想方法等,要有对重点难点的分析和解决方法。同时课后做好教学过程的反思总结。
2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向
《考试说明》反映了命题的方向,认真研读考纲和说明,这样不但可以从宏观上掌握考试内容,做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求,分清哪些内容只要一般理解,哪些内容应重点掌握,哪些知识又要求灵活运用和综合运用。复习中,要结合课本,对照《考试说明》把知识点从整体上再理一遍,既有横向串联,又有纵向并联。在复习中力争不要做无用功,有些内容就得敢于大胆的取舍,因为题永远是讲不完也是做不完的。
从近三年的xx高考来分析,我们预测:20xx年的总体要求保持平稳,20xx年xx高考文科数学试题难度应与20xx年高考试题难度基本一致或略难一点,试题的结构稳定的可能性也比较大。
从20xx年xx高考试题题看,我们备课组的备考总方向和难度都预测和控制得比较理想,下面对照分析我校20xx年校模和20xx年xx高考文科数学解答题情况:
题号
20xx校模
20xxxx高考
第16题
(三函数数)考察解三角形及三角函数的求值
(三函数数)考察三角函数的求值
第17题
(概率统计)考察频率、方差、古典概型及茎叶图
(概率统计)考察频率、古典概型
第18题
(立体几何)考察线面垂直、等积法求体积
(立体几何)考察线面平行、垂直、等积法求体积
第19题
(数列应用题)考察等差、等比数列求和
(数列)考察和式求通项、等差数列、数列求和
第20题
(解析几何)考察待定系数法法求曲线方程、定值问题及函数方程思想
(解析几何)考察考察待定系数法法求曲线方程、最值问题及函数方程思想
第21题
(函数导数)考察函数的单调性、存在性问题、证明不等式、分类讨论思想
(函数导数)考察察函数的单调性、函数最值、分类讨论思想
3、制定切实可行的计划,并且基本上按照计划安排进行复习,达到比较好的复习效果、
俗话:凡事不预而不立。切实可行的意思是计划要细致、具体、严格,一定要遵循计划的安排走,大家知道高三的复习,其实不止我们数学这一科,其他的学科也在内,都是时间紧任务重,要在有限的时间完成可以说是无限的复习内容,不精心作以安排,在复习中势必出现忙乱的现象,也会容易出现顾此失彼的后果。
在开学伊始,全组教师共同商讨就制定出一份时间上、具体到每章每节要用多少课时的不至于流于形式的严格计划,在计划中不但要考虑教学内容的多少,还要考虑在高考中占有的比重,更要顾及哪些内容是我们值得付出时间和精力的,等等一系列因素,使得大家在时间上有了紧迫感,使得我们的教学内容更加有效率,使得我们更能发挥积极性去充分地调动学生。
从第二学期的三次模拟(韶一模、广一模、韶二模)考试结果看,取得了取较好的复习效果,当然最终还是要经过高考结果的'检验。
附:高三数学复习分四个阶段的时间表:
第一阶段:高二期中后到3月10日前完成第一轮复习:系统复习(原计划上学期末结束)
第二阶段:3月10日到5月15日完成二轮复习:专题复习。
第三阶段:5月15日到5月底完成三轮复习:查漏补缺与模拟题训练;
第四阶段:6月1号到6号,学生自己复习与调整阶段。
4、注重数学学科的思想渗透,强化能力的培养、给学生科学合理适于接受的数学学习建议。
在复习中,加强基础知识的巩固和提高,加强各知识板块间的联系和综合,加强通性通法的总结和运用,重视教材,狠抓基础是根本;立足中低档,降低重心是策略;过程中发展能力,提高素质是核心。记得在开学初的教研活动中,我们数学的所有老师展开了对各年高考试题的研讨,大家的一致意见就是狠抓基础,立足中档题。在复习过程中我们经常提醒学生多回顾课本、做好学习笔记和纠错本,浓缩所学知识,熟练掌握解题方法,加快解题速度,缩短遗忘周期,达到复习巩固提高的效果,以提高知识与能力的综合性、应用性、创新性为重点。
在复习内容的安排上我们实行代数与几何、较易板块与较难板块交替进行复习,引导学生立足课本,浏览以前的课堂笔记,激活所有数学知识点,这样做既巩固了基础,又给尖子生突破综合问题留出了时间,树立了备战高考的信心、
在集体教研选择教学题目时尤其注重:(1)强调知识的综合性及不同章节的内在联系;(2)不断渗透重要的数学思想与方法。如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想方法;转化与划归的思想方法;运动与变换的思想方法等不断在复习过程中渗透;(3)强化数学思维训练,体现多一点想,少一点算或不急于算。也就是我们曾经说的:磨刀不费砍材功、(4)反思解答问题时的开窍点,优化解题时思维线路,熟练解答问题的通性通法,强化解答综合性数学高考试题的一般思维模式,就能不断提高综合分析问题和解决问题的能力、
5、精选题目,编写好补充讲义、周练、连堂训练(限时训练)、加强检查落实及做好各次月考模考的考试分析。
三位老师既合作、又分工明确,我负责参考在理科数学补充讲义的基础,修改和编写文科数学补充讲义及命制各次周考、月考、模考试题,刘昕负责出好每周的连堂训练和限时训练,杜秋出好每周的周练及做好练习及考试题检对及送印工作。连堂训练(限时训练)让学生独立完成,提高运算能力,在第二节课讲评,周练下周一收,一般安排在周二讲评。周六考、月考或模考周六,加强横向与纵向对比;及时做好统计分析。
以重点知识再复习为主,高三这一年的复习备考中我们一直采取段段清,紧紧跟的原则,所谓段段清就是复习完一个章节即时考查,力求不留知识死角,使得基础复习更完备,知识脉络更清晰,所谓紧紧跟就是复习完这一章再连同前面复习的所有的内容一起再考一次,做好滚动练习与周连结合,及时的巩固缩短了遗忘周期、
在二轮复习过程中,我们基本采用了以学生为主体的练讲结合,把所有的题目都让学生独立的完成,然后学生讲评、老师点评、点拨。达到精讲精练的目的。也使学生不在题海中泛滥,而是在规律和方法中寻求触类旁通,举一反三,游刃有余的学习境界、
6、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生心理辅导。
尖子生的培养文理合为一个班(文10人,理30人),按计划每周上课,充分调动学生积极性和主动性,营造学习和研讨学风。临界生成绩是否能提高直接影响高考的成败,临界生的培养不是一朝一夕的事儿,尤其是文科,很多学生都是因为数学不好才选择了文科,甚至很多尖子生在数学上都存在缺腿现象,这就造成班级没有学习数学的氛围,没有带头人,下大力气培养尖子生,因为只要有一人能学会就会一帮两,两帮三从而带动一批人来学数学。我们的具体做法是:课堂上重点抓基础讲教材,尤其是书上例题书后习题,高考很多知识的考察都是源于课本而高于课本,只有打好基础才能做好提高;课下每天坚持找目标生谈心,多鼓励,做好学生的心理辅导,对于作业必须面批,这方面得到了班主任的大力支持,这不仅提高了学生学习数学的积极性,也培养了学生独立思考和解决问题的能力,同时提高他们的数学成绩。年级将艺体生组成一个班,从他们回来开始,就安排三位老师(谢谢理科备课组的大力支援!)坚持上课到6月5日,取得较好的效果。
二、备考不足之处
1、第一轮复习没有完全按计划结束,拖得时间略长了些,导致二、三轮复习时间略紧,稍微被动了些。
2、由于我本人自分文理科后,没有担任文科数学教学的经验,在复习的难度把握上还是略拔高了些。
3、数列内容的复习,受xx高考前几年的影响,在难度上把握得太难了,虽然近两年的难度减小的呼声,但复习仍不敢降得太多。不过这点还值得商讨。
三、几点备考建议:
1、制定切实可行的计划,并且上按照计划安排进行复习,保证第一轮复习既扎实进行,又完全按计划结束。
2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向,尤其是把握好文科数学特点,控制复习的难度和深度,这是高考备考指导方针。
3、认真加强周练、连堂训练(限时训练)的加强检查落实及做好各次月考模的考试分析,
这是高考成功的保证。
4、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生方法指导和心理辅导,这是高考的突破点和增长点。
高三数学考试分析总结 篇15
高三数学总复习既要立足于巩固所学的基础知识、掌握基本方法和技能,又要着眼于提高能力、深化思维;既要在复习中学全题型,又要避免“题海战术”,因此复习的质量直接关系到高考的成败。以下是的高三数学复习计划。
一、指导思想:
高三复习应根据本校学生的实际,立足基础,构建知识网络,形成完整的知识体系。要面向低、中档题抓训练,提高学生运用知识的能力,要突出抓思维教学,强化数学思想的运用,要研究高考题,分析相应的应试对策,更新复习理念,优化复习过程,提高复习效益。
二、复习进度:
按教研室下发的计划为准,结合本校实际,一轮在2月底3月初完成。材料以教研室下发材料为主,进行集体备课,难题删去。
每章进行一次单元过关考试和一次满分答卷,统考前进行一次模拟考试练习。
三、复习措施:
1、 抓住课堂,提高复习效益。
首先要加强集体研究,认真备课。集体备课要做到:“一结合两发挥”。一结合就是集体备课和个人备课相结合,集体讨论,同时要发挥每个教师的特长和优势,互相补充、完善。两发挥就是,充分发挥备课组长和业务骨干的作用,充分发挥集体的智慧和优势、集思广益。
集体备课的内容:备计划、课时的划分、备教学的起点、重点、难点、交汇点、疑点,备习题、高考题的选用、备学情和学生的阶段性心理表现等。
其次精选习题,注重综合 。复习中要选“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。选有一定的代表性、层次性和变式性的题目取训练学生综合分析问题的能力。
再次上好复习课和讲评课。复习课,既讲题也讲法,注重知识的梳理,形成条理、系统的结构框架,章节过后学生头脑中要清晰。要讲知识的重、难点和学生容易错的地方,要引导学生对知识横向推广,纵向申。复习不等于重复也不等于单纯的解题,应温故知新,温故求新,以题论法,变式探索,深化提高。讲出题目的价值,讲出思维的过程 ,甚至是学生在解题中的失败的教训和走过的弯路。功夫花在如何提高学生的分析问题和解决问题的能力上
讲评课要紧紧的抓住典型的题目讲评,凡是出错率高的题目必须讲,必须再练习。讲解时要注意从学生出错的根源上剖析透彻 ,彻底根治。要做到:重点讲评、纠错讲评和辩论式讲评相结合,或者让学生讲题,给学生排疑解难,帮助学生获得成功。
2、畅通反馈渠道,了解学生
通过课堂提问、学生讨论交流、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教师的教最大程度上服务于学生。
3、复习要稳扎稳打,注重反思
数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结 。反思总结解题过程的俄 来龙去脉;反思总结此题和哪些题类似或有联系及解决这类问题有何规律可循5;反思总结此题还有无其它解法,养成多角度多方位的思维习惯;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。
注意心理调节和应试技巧的训练,应试的技巧和心理的训练要三高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。
4、强化数学思想方法的渗透,提高学生的解题能力
在复习中要加强数学思想方法的复习,特别要研究解题中常用的思想方法:函数和方程的思想、数形结合思想、分类讨论思想、转化和化归的思想,还有极限的思想和运动变化的思想,而采用的方法有:换元法、待定系数法、判别式法、割补法等,逻辑分析法有分析法、综合法、数学归纳法和反证法等。对于这些数学思想和方法要在平日的教学中,,结合具体的题目和具体的章节 ,有意识的、恰当的进行渗透学习和领会,要让学生逐个的掌握他们的本质的特征和运用的基本的程序,做到灵活的运用和使用数学思想和方法去解决问题。复习中注重揭示思想方法在知识互相联系、互相沟通中的纽带作用。
高三数学考试分析总结 篇16
09年的这一个学期是忙碌而充满激情的一个学期半年来的风风雨雨让我获益多多。表现的不仅是在教学上,更多的时候是自己的提高上!
一、科学备考认真命题
本学期我们在上好复习的同时,非常重视每次考试的命题工作为此,我们每一位老师都付出了大量的.心血从选题到打印出试题都很认真,从知识点的考察到学习内容的配备
我们都进行了认真的筛选和反复修改保证每次的命题都达到训练的要求!
二、重视课堂教学注重师生互动
我们每位数学教师都是课堂教学的实践者为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想把数学教学看成是师生之间学生之间交往互动共同发展的过程在教研组长的带领下紧扣新课程标准和我校"自主--创新"的教学模式在有限的时间吃透教材分工撰写教案以组讨论定稿,学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中使学生的智慧、能力、情感、信念水乳交融心度受到震撼,心理得到满足,学生成了学习的主人学习成了他们的需求学中有发现学中有乐趣学中有收获,这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径,常思考常研究常总结,以科研促课改以创新求发展,进一步转变教育观念坚持"以人为本促进学生全面发展打好基础,培养学生创新能力",
以"自主--创新"课堂教学模式的研究与运用为重点努力实现教学高质量课堂高效率。
三、不断反思寻求备考的遗漏
我们把评价作为全面考察学生的学习状况激励学生的学习热情促进学生全面发展的手段,也作为教师反思和改进教学的有力手段除了认真讲解必考的知识点外我们还在教学之余不断反思,认真总结我们在教学中出现的问题尽量想出补救的方法和步骤为此我们分工合作将课本来了一次大扫荡把课本中的一些重要知识点进行再现通过试题的形式展现在每一位学生面前!尽量让学生以最短的时间获得最大的收益!将本着"勤学、善思、实干"的准则一如既往再接再厉把工作搞得更好。
高三数学考试分析总结 篇17
一个推导
利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
三种方法
等比数列的判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.
高三数学考试分析总结 篇18
xx年是高考中实施新课程的第一年。高考已结束,一切在情理之中,一切又在探索之中,我们学校也取得了一定的成绩,回顾一年来走过的脚印,依然历历在目。从高三数学备考第一天开始,根据过去的实践经验,心理很清楚该怎么做,同时也知道这一仗一定是很艰苦的,很多事情没有完全反应过来,就卷入了备考激流中,没有退路,只能是随流勇进。
面对文科生的数学基础,我们只能是一方面延长第一轮复习时间,减少专题复习,另一方面降低所学内容难度。但这样做只能是捉襟见肘,月月有月考,周周有综合练习,很多学生在这种枪林弹雨的日子里,早就伤痕累累,寸步难行。没办法我们只能步步前进,希望能出成绩。
我们具体的做法是:
第一轮单元复习(从20xx年10月——20xx年3)。第一轮复习是基础,是学生高考成功的关键。我们制定的目标是“全面、细致、扎实,注意基础知识落实,”具体策略是“高度重视,以熟悉教材为中心,坚持归纳和反思,坚持训练和解题。”落实好每一个知识点,提高解题能力,讲完每一章节内容后,有小结,有测验,有评讲,有提高。全面细致的第一轮复习起到了明显效果。
第二轮专题复习(20xx年4月——5月)。确立的指导思想是“重视知识体系的构建和能力的提升”。从第二轮复习开始,我们穿插进行选择题、填空题和解答题专项训练,。解填空题的基本要求是“正确、合理、迅速”。“合理是前提”,“迅速是基础”,“正确是根本”。迅速的基础是:概念清楚,推理明白,运算熟练,合理跳步,方法灵活。因此,要在“准”、“巧”、“快”上下功夫。让学生掌握解选择题常用方法特例法,筛选法,代入法,图解法
第三轮冲刺复习(20xx年5月——6月)。我们提出了“调整(心态)、巩固(基础)、充实(薄漏)、提高(能力)”的八字方针,对学生指导性极强,整合了各地的复习资料,结合个人心得,同时要求学生对试卷进行错题收集和归类整理,这也是一种很有效的复习方式。
最后的十天冲刺复习,我们给学生提出了灵感复习法,要求“回归基础,回
归教材”。抓好两条复习主线,一方面是对照考纲看教材,注重基础知识;另一方面是对照试卷看题目,查漏补缺,以适度紧张的平常心、饱满的精神状态和强烈的自信心,搞好后面10天的灵感复习。
经过一年的努力,在今年的高考中取得了不错的成绩,那只能代表过去,正所谓“战斗正未有穷期”,面临着下一年的高考,我们需要进行新的学习和接受新的挑战。我们有决心也有信心,一如既往的努力,争取新的成绩!
高考虽然结束,却留下一些存在的问题引起我们深思:
1、我们是首届使用新教材,对教材的把握和知识内容体系的.“度”的控制,以及教学进度的掌握均存在一定的缺憾。导致学生基础知识遗忘率高,教师教的辛苦学生学的也累。
2、学校的两条线复习①学生自主复习;②教师复习安排,并轨进行这是科学的。但是大多数学生还不是很配合。
3、我们的复习强度够不够?
4、讲、练、批、评的比例是否安排恰当吗?
5、对差生的积极性有没有完全调动起来?对非智力因素挖掘得够不够?
高三数学考试分析总结 篇19
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a—边长,S=6a2,V=a3
4、长方体
a—长,b—宽,c—高S=2(ab+ac+bc)V=abc
5、棱柱
S—底面积h—高V=Sh
6、棱锥
S—底面积h—高V=Sh/3
7、棱台
S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1—上底面积,S2—下底面积,S0—中截面积
h—高,V=h(S1+S2+4S0)/6
9、圆柱
r—底半径,h—高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)
11、直圆锥
r—底半径h—高V=πr^2h/3
12、圆台
r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3
13、球
r—半径d—直径V=4/3πr^3=πd^3/6
14、球缺
h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3
15、球台
r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6
16、圆环体
R—环体半径D—环体直径r—环体截面半径d—环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D—桶腹直径d—桶底直径h—桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
高三数学考试分析总结 篇20
等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1)a>bb
(2)a>b,b>ca>c(传递性)
(3)a>ba+c>b+c(c∈R)
(4)c>0时,a>bac>bc
cbac
运算性质有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高中数学集合复习知识点
任一A,B,记做AB
AB,BA ,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1.集合元素具有①确定性;②互异性;③无序性
2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n-1;
非空真子集数:2n-2
高中数学集合知识点归纳
1、集合的概念
集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:
元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。
3、集合中元素的特性
(1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
4、集合的分类
集合科根据他含有的元素个数的多少分为两类:
有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。
特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。
5、特定的集合的表示
为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。
(2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。
(3)全体整数的集合通常简称为整数集Z。
(4)全体有理数的集合通常简称为有理数集,记做Q。
(5)全体实数的集合通常简称为实数集,记做R。
高三数学考试分析总结 篇21
三角函数
注意归一公式、诱导公式的正确性
数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;
高三数学考试分析总结 篇22
高三数学每轮复习要领
一、高三数学复习,大体可分四个阶段,每一个阶段的复习方法与侧重点都各不相同,要求也层层加深,因此,同学们在每一个阶段都应该有不同的复习方案,采用不同的方法和策略。
1.第一阶段,即第一轮复习,也称“知识篇”,大致就是高三第一学期。在这一阶段,老师将带领同学们重温高一、高二所学课程,但这绝不只是以前所学知识的简单重复,而是站在更高的角度,对旧知识产生全新认识的重要过程。因为在高一、高二时,老师是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,你学的往往时零碎的、散乱的知识点,而在第一轮复习时,老师的主线索是知识的纵向联系与横向联系,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,侧重点在于各个知识点之间的融会贯通。所以大家在复习过程中应做到: ①立足课本,迅速激活已学过的各个知识点。(建议大家在高三前的一个暑假里通读高一、高二教材) ②注意所做题目使用知识点覆盖范围的变化,有意识地思考、研究这些知识点在课本中所处的地位和相互之间的联系。注意到老师选题的综合性在不断地加强。 ③明了课本从前到后的知识结构,将整个知识体系框架化、网络化。能提炼解题所用知识点,并说出其出处。 ④经常将使用最多的知识点总结起来,研究重点知识所在章节,并了解各章节在课本中的地位和作用。
2.第二轮复习,通常称为“方法篇”。大约从第二学期开学到四月中旬结束。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用“配方法、待定系数法、换元法、数形结合、分类讨论”等方法解决一类问题、一系列问题。同学们应做到: ①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。 ②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。 ③从现在开始,解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家务必将解题过程写得层次分明,结构完整。 ④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。
3.第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到: ①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。 ②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。 ③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。
4.最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接、主动的.研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并做到: ①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。 ②抓思维易错点,注重典型题型。 ③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。 ④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。 ⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。
二、高三数学复习中的几个注意点
1.复习资料要精,不可超过两套,使用过程中,始终注重其系统性。千万不要贪多,资料多了,不但使自己身陷题海,不能自拔,而且会因为你的顾此失彼,而使知识体系得不到延续。
2.有的同学漠视自己作业和考试中出现的错误,将他们简单的归结为粗心大意。这是很严重的错误想法,我们的错误都有其必然性,一定要究根问底,找出真正的原因,及时改正,并记住这样的教训。
3.千万不要以为“高考以能力立意”,就是要去钻难题、偏题、怪题。这里的能力是指:思维能力,对现实生活的观察分析力,创造性的想象能力,探究性实验动手能力,理解运用实际问题的能力,分析和解决问题的探究创新能力,处理、运用信息的能力,新材料、新情景、新问题应变理解能力,其重点是概念观点形成和规律的认识过程,它往往蕴藏在最简单、最基础的题目活事实之中。不是钻牛角尖能钻出来的能力。
4.合理看待来自老师和社会各界的猜题、压题信息,不可迷信。因为,他们也不是神,我们上了考场只能凭自己的实力,凭自己的智慧去打拼,所以,我们应该踏踏实实、认认真真做好复习应考工作。
高中数学学习方法
1一本书
就是教科书,这是基础的基础,但是被中等生最忽视的。笔者高中时,先看教科书再做题,所以往往同学做到第5题,我才刚开始,但当我做了20题时,反过来发现同学做到第17题,这就是磨刀不误砍柴工。最后不仅省时,而且比同学多巩固了书本知识,然后从书本原理到题目及从题目到原理走了一个来回,培养了以理论解决实际问题的能力,提高了以不变应万变的能力。一句话,省时又高效。为摆脱题海打下了基础。
2两方法
1)找到已知与求解的“桥梁”。主要针对中等题及难题,利用已知,推一步或几步,完成转化,从求解往后推几步,看看还缺什么,再去回忆脑袋里的知识点及解过的经典题,把已知与求解的差距补上,这个就是“桥梁”原理。
2)有些题按上述方法还遇到困难,可能需要另辟蹊径,如从定义出发或需要再审视已知条件,可能还未用尽已知条件或有些暗含的已知条件未挖掘出来。
3三部曲:
1)先看教科书,真正搞懂课本例题,并做课后练习(虽然看上去很简单,但是实质上就是要你检查自己是否真的掌握这些基本知识点.),
2)利用历年高考真题, 这些题很有价值,先掩着答案,根据你之前课本学的基础内容,尝试自己亲自动手做一下,再对答案,明白其原理.,真正弄懂它,看看能否举一反三,可问老师及同学,也可请家教,最后达到触类旁通。
3)同步练习,必须紧跟课程,不能赖下来的,一步一个脚印去做.
数学知识点较多,容易忘记,但以上的步骤你都能做到的话,那么就不那么容易遗忘,即使忘记,你也可以翻阅以前的内容重新巩固一遍.
4四层次
1)
基本知识点。含概念、定义、定理、公式等,这是基础,这个不过关,其他免谈。笔者平时先看教科书,就是这个道理。--这部分,虽然重要,但笔者辅导不作重点,只是检查与提醒,因为可自学及问自己老师同学。会这个的人太容易找到了。
2)
数学思想与数学技能。数学思想如方程函数思想、数形结合思想、对称思想、分类讨论思想,化归思想;数学技能如配方、待定系数法等。笔者由于这方面强,故多年不做题或见到陌生题均不慌,因为这些思想能力是深入骨髓的。
3)
数学模型与中间结论。数学模型就是具体题目的解题套路,中间结论可使学生减少解题步骤,加快解题速度,减少出错机会。这些有了2数学思想与数学技能,就能自己推导出来,但要注意总结与积累。
4)
特殊解题技巧。这个要求以上3方面都较强,聪明加灵感,平时善于总结与归纳,看透事物本源,熟能生巧,触类旁通。故对中等生不作过高要求,所谓可遇而不可求。笔者对高考实考试卷的选择与填空,特别是选择,有相当部分,有的试卷甚至一半以上可在题读完后,几秒得出正确答案。凭的就是这个本事。